Bienvenue dans un nouveau monde... le notre

Évolution : 200 000 ans dans la vie d’une forêt virtuelle
Actualités

Évolution : 200 000 ans dans la vie d’une forêt virtuelle

Sur une île virtuelle, Christophe Eloy, de Centrale Marseille, et ses collègues ont semé des graines d’arbres, elles aussi virtuelles, pour les voir pousser, produire de nouvelles graines, observer l’apparition de mutations génétiques et le résultat de la sélection naturelle. Les chercheurs ont ainsi mis en évidence deux facteurs qui influent particulièrement sur l’évolution des arbres et notamment sur leur structure : la résistance au vent et la compétition pour la lumière du soleil.

La géométrie des arbres suit certaines relations mathématiques simples, nommées lois d’échelles allométriques. Par exemple, Léonard de Vinci avait observé que la somme des sections des branches connectées au tronc était égale à la section de ce tronc. De façon plus générale, la structure en branches  est dite auto-similaire car elle se reproduit à toutes les échelles depuis le tronc et les branches principales jusqu’aux plus petites branches, sur le même principe que les fractales. Les lois allométriques relient encore d’autres grandeurs : la masse moyenne d’un arbre au nombre d’arbres par hectare – c’est la loi d’auto-éclaircie –, ou la hauteur de l’arbre à son diamètre. Les explications classiquement avancées pour justifier ces observations sont d’origine mécanique et hydraulique : les arbres sont contraints à cette géométrie afin de ne pas s’effondrer sous leur propre poids et pour pouvoir faire monter la sève des racines jusqu’aux feuilles.  

Les modèles développés à partir de ces principes négligent cependant deux facteurs de première importance : le rôle du vent qui exerce une importante contrainte mécanique sur les branches, élaguant les branches trop faibles et abattant les arbres mal équilibrés, et la compétition pour l’accès à la lumière. Le rayonnement solaire est indispensable à la photosynthèse, qui produit les ressources de l’arbre. Ainsi des arbres plus hauts et plus étendus capteront mieux la lumière et feront de l’ombre à d’autres espèces plus petites. À ces deux actions ont été rajoutés deux ingrédients issus des dernières recherches en biologie végétale : la capacité des arbres à percevoir les déformations liées au vent (on parle de thigmomorphogenèse) et la lumière qui arrive sur leurs bourgeons, et d’y réagir en modulant leur croissance !

Pour en savoir plus sur l'interaction de tous ces facteurs, Christophe Eloy et ses collègues ont développé un modèle numérique nommé MechaTree. Les arbres sont définis par un vaste éventail de caractéristiques : la longueur et le diamètre des branches, l’importance et la transparence du feuillage, la vitesse de croissance, etc. En principe, un arbre transmet ses caractéristiques à sa descendance, mais les chercheurs ont conçu leur modèle de sorte que ces paramètres puissent éventuellement varier d’une génération à une autre de façon aléatoire. Ils simulent ainsi l’apparition de mutations aléatoires.

Le modèle est divisé en cycles comprenant chacun plusieurs étapes. Pour commencer, le programme calcule la quantité de lumière reçue par le feuillage de chaque arbre et la résistance mécanique de chaque branche. Il procède alors à une étape de pousse du diamètre des branches en fonction l’énergie produite par photosynthèse et des stimulations exercées parle vent. Un vent de force et de direction arbitraire souffle alors sur la forêt et casse les branches qui ne sont pas assez résistantes : c’est la phase d’élagage. Une sélection s’opère alors : les arbres qui ont atteint l’âge respectable de 1 000 ans ou ceux de plus de 6 ans qui ont moins de dix branches meurent. Pour les arbres survivants commence alors la pousse de nouvelles branches et la production de graines. La croissance d’un arbre est contrôlée par un réseau de neurones qui détermine où une nouvelle branche pousse, selon quelle direction (en fonction de la lumière perçue), etc. Les graines sont semées et de nouveaux arbres poussent. Un nouveau cycle peut alors commencer.

Les chercheurs ont initié leur simulation avec plusieurs milliers d’arbres dotés de « génomes » aléatoires plantés sur une île, afin d’avoir un environnement isolé. Ils ont fait courir leur simulation pendant l’équivalent de dizaines de milliers d’années (jusqu’à 200 000 ans, soit des milliers d’heures de calcul). Ils ont ainsi vu sous leurs yeux les générations d’arbres se succéder et la sélection naturelle opérer. Les arbres dont les caractéristiques n’étaient pas compétitives ont fini par disparaître et ceux qui avaient un génome avantageux se sont imposés.

Quels ont été les résultats de cette simulation ? L’arbre qui domine l’île à la fin de la simulation présente des caractéristiques proches de celles des pins à pignon. Et les chercheurs ont retrouvé toutes les lois d’échelle connues : la loi de Léonard de Vinci, la dimension fractale des branches, la loi d’auto-éclaircie et le lien entre taille et diamètre de l’arbre. Ils ont pu identifier le rôle de chaque facteur dans ce résultat. La compétition pour l’accès à la lumière et la transparence du feuillage conduisent à la dimension fractale de l’arbre tandis que la réponse au vent, la thigmomorphogenèse, contrôle le diamètre des branches. Cela n’écarte pas le rôle du transport de sève dans la structure des arbres, un rôle dont l’importance pourrait varier selon les conditions climatiques et environnementales où poussent les arbres.


Source : Pour la science
Crédit : C. Eloy/Centrale Marseille

Un arbre typique obtenu à la fin de la simulation. Les couleurs définissent l’ordre des branches. On retrouve une structure autosimilaire à toutes les échelles de branches (sur le même principe que les fractales), comme dans les vrais arbres.

Évolution : 200 000 ans dans la vie d’une forêt virtuelle Actualités

Évolution : 200 000 ans dans la vie d’une forêt virtuelle

Sur une île virtuelle, Christophe Eloy, de Centrale Marseille, et ses collègues ont semé des graines d’arbres, elles aussi virtuelles, pour les voir pousser, produire de nouvelles graines, observer l’apparition de mutations génétiques et le résultat de la sélection naturelle. Les chercheurs ont ainsi mis en évidence deux facteurs qui influent particulièrement sur l’évolution des arbres et notamment sur leur structure : la résistance au vent et la compétition pour la lumière du soleil.

La géométrie des arbres suit certaines relations mathématiques simples, nommées lois d’échelles allométriques. Par exemple, Léonard de Vinci avait observé que la somme des sections des branches connectées au tronc était égale à la section de ce tronc. De façon plus générale, la structure en branches  est dite auto-similaire car elle se reproduit à toutes les échelles depuis le tronc et les branches principales jusqu’aux plus petites branches, sur le même principe que les fractales. Les lois allométriques relient encore d’autres grandeurs : la masse moyenne d’un arbre au nombre d’arbres par hectare – c’est la loi d’auto-éclaircie –, ou la hauteur de l’arbre à son diamètre. Les explications classiquement avancées pour justifier ces observations sont d’origine mécanique et hydraulique : les arbres sont contraints à cette géométrie afin de ne pas s’effondrer sous leur propre poids et pour pouvoir faire monter la sève des racines jusqu’aux feuilles.  

Les modèles développés à partir de ces principes négligent cependant deux facteurs de première importance : le rôle du vent qui exerce une importante contrainte mécanique sur les branches, élaguant les branches trop faibles et abattant les arbres mal équilibrés, et la compétition pour l’accès à la lumière. Le rayonnement solaire est indispensable à la photosynthèse, qui produit les ressources de l’arbre. Ainsi des arbres plus hauts et plus étendus capteront mieux la lumière et feront de l’ombre à d’autres espèces plus petites. À ces deux actions ont été rajoutés deux ingrédients issus des dernières recherches en biologie végétale : la capacité des arbres à percevoir les déformations liées au vent (on parle de thigmomorphogenèse) et la lumière qui arrive sur leurs bourgeons, et d’y réagir en modulant leur croissance !

Pour en savoir plus sur l'interaction de tous ces facteurs, Christophe Eloy et ses collègues ont développé un modèle numérique nommé MechaTree. Les arbres sont définis par un vaste éventail de caractéristiques : la longueur et le diamètre des branches, l’importance et la transparence du feuillage, la vitesse de croissance, etc. En principe, un arbre transmet ses caractéristiques à sa descendance, mais les chercheurs ont conçu leur modèle de sorte que ces paramètres puissent éventuellement varier d’une génération à une autre de façon aléatoire. Ils simulent ainsi l’apparition de mutations aléatoires.

Le modèle est divisé en cycles comprenant chacun plusieurs étapes. Pour commencer, le programme calcule la quantité de lumière reçue par le feuillage de chaque arbre et la résistance mécanique de chaque branche. Il procède alors à une étape de pousse du diamètre des branches en fonction l’énergie produite par photosynthèse et des stimulations exercées parle vent. Un vent de force et de direction arbitraire souffle alors sur la forêt et casse les branches qui ne sont pas assez résistantes : c’est la phase d’élagage. Une sélection s’opère alors : les arbres qui ont atteint l’âge respectable de 1 000 ans ou ceux de plus de 6 ans qui ont moins de dix branches meurent. Pour les arbres survivants commence alors la pousse de nouvelles branches et la production de graines. La croissance d’un arbre est contrôlée par un réseau de neurones qui détermine où une nouvelle branche pousse, selon quelle direction (en fonction de la lumière perçue), etc. Les graines sont semées et de nouveaux arbres poussent. Un nouveau cycle peut alors commencer.

Les chercheurs ont initié leur simulation avec plusieurs milliers d’arbres dotés de « génomes » aléatoires plantés sur une île, afin d’avoir un environnement isolé. Ils ont fait courir leur simulation pendant l’équivalent de dizaines de milliers d’années (jusqu’à 200 000 ans, soit des milliers d’heures de calcul). Ils ont ainsi vu sous leurs yeux les générations d’arbres se succéder et la sélection naturelle opérer. Les arbres dont les caractéristiques n’étaient pas compétitives ont fini par disparaître et ceux qui avaient un génome avantageux se sont imposés.

Quels ont été les résultats de cette simulation ? L’arbre qui domine l’île à la fin de la simulation présente des caractéristiques proches de celles des pins à pignon. Et les chercheurs ont retrouvé toutes les lois d’échelle connues : la loi de Léonard de Vinci, la dimension fractale des branches, la loi d’auto-éclaircie et le lien entre taille et diamètre de l’arbre. Ils ont pu identifier le rôle de chaque facteur dans ce résultat. La compétition pour l’accès à la lumière et la transparence du feuillage conduisent à la dimension fractale de l’arbre tandis que la réponse au vent, la thigmomorphogenèse, contrôle le diamètre des branches. Cela n’écarte pas le rôle du transport de sève dans la structure des arbres, un rôle dont l’importance pourrait varier selon les conditions climatiques et environnementales où poussent les arbres.


Source : Pour la science
Crédit : C. Eloy/Centrale Marseille

Un arbre typique obtenu à la fin de la simulation. Les couleurs définissent l’ordre des branches. On retrouve une structure autosimilaire à toutes les échelles de branches (sur le même principe que les fractales), comme dans les vrais arbres.

LE GUIDE Naturellement

Agenda . . .

21 - COTES-D'OR

Du 8 avril 2017 au 7 janvier 2018
"SAUVAGES"

Lynx boréal, Ours brun, Loup gris, Renard roux et Loutre d'Europe.
Cette nouvelle exposition propose une mise en scène originale adaptée à un public familial. De nombreuses illustrations, schémas, spécimens naturalisés, pièces archéologiques et ostéologiques, témoignages d’experts… apportent des éléments objectifs, de façon claire et synthétique sur ces cinq Mammifères Carnivores. Le visiteur pourra ainsi, en toute connaissance de cause, avoir un avis éclairé sur la place qu’il serait prêt à leur laisser.

Jardin des sciences
Avenue Albert 1er & 14 rue Jehan de Marville (Parc de l’Arquebuse)
21000 Dijon
03 80 48 82 00
www.dijon.fr


30 - GARD

14 avril au 1er mai
"VENEZ VOLER DANS LA GROTTE DE LA SALAMANDRE"

Vivez une expérience extraordinaire : voler en ballon dans une énorme caverne… Embarquer dans l’’Aéroplume, un ballon plus léger que l’’air, mu par la force humaine.

Grotte de la Salamandre
30430 Méjannes le Clap
04 66 600 600
www.grottedelasalamandre.com


40 - LANDES

Du 15 avril au 26 novembre

"L'ART DES CHASSEURS PRÉHISTORIQUES"

A travers cette exposition, la Maison de la Dame propose de découvrir toutes les facettes de l'art des chasseurs préhistoriques.

La Maison de la Dame de Brassempouy
404 rue du Musée
40330 Brassempouy
05 58 89 21 73
www.prehistoire-brassempouy.fr


70 - HAUTE-SAONE

Du 29 septembre au 22 décembre
"LA SÉGRÉGATION ET LA GLOIRE, LES SOLDATS NOIRS-AMÉRICAINS AU CŒUR DE LA GRANDE GUERRE"

Cette exposition traite de l’engagement des noirs-américains dans la 1ère guerre mondiale. Ces derniers bien que libérés de l’esclavage en 1865 subissaient alors des discriminations économiques et sociales auxquelles s’ajoutaient dans les états du Sud des Etats-Unis, la ségrégation raciale.

Maison de la Négritude et des Droits de l'Homme
24 Grande Rue
70290 Champagney
03 84 23 25 45
www.maisondelanegritude.fr


74 - HAUTE-SAVOIE

Jusqu'au 31 décembre 2018
EXPOSITION TEMPORAIRE
"Sibérie centrale et orientale"

Muséum des Papillons
et Insectes du Château de Faverges

293 chemin de la Vie Plaine
74210 Faverges
07 78 41 33 51
www.museum-faverges.com


81 - TARN

Du 1er décembre au 31 janvier 2018
FESTIVAL DES LANTERNES
Féérie des lumières d'Asie

Chaque soir à la tombée de la nuit, la féérie des lanternes chinoises illumine le site classé du parc Foucaud.
Autour du château, sous les arbres millénaires ornés de lumière, dans les bassins et pièces d'eau, vingt tableaux se succèdent entre pagodes, temples asiatiques, animaux fantastiques, nénuphars et autres pandas.

Parc de Foucaud
Avenue Dom Vaysette
81600 Gaillac
https://festivaldeslanternes-gaillac.fr

Lieux:

Découvrir toutes les activités