Bienvenue dans un nouveau monde... le notre

Comment les mathématiques décrivent les motifs du lézard ocellé
Actualités

Comment les mathématiques décrivent les motifs du lézard ocellé

La robe des léopards, des zèbres et autres poissons clown arbore des motifs complexes. Comment les cellules pigmentaires microscopiques de leur peau (ou chromatophores) s'organisent-elles pour former ces spectaculaires dessins macroscopiques ? En 1952, le mathématicien anglais Alan Turing – le « père » de l'informatique – a donné une explication générale à ce phénomène en proposant un modèle qui décrit comment des réactions entre des molécules qui se diffusent dans un milieu conduisent à la formation de structures comme des zébrures, des taches, etc. Cependant, les motifs « labyrinthiques » visibles sur le dos du lézard ocellé (Timon lepidus), composés d’écailles vertes et noires, ne semblent pas obéir à ces équations. Michel Milinkovitch, biophysicien à l’université de Genève, et son équipe ont montré que le concept d'automate cellulaire, développé par autre mathématicien de génie, John von Neumann, permet de décrire la parure du reptile.

Chez le lézard ocellé, le « pixel » est l’écaille : chacune présente une couleur uniforme. Une particularité du lézard ocellé est que son aspect change au cours de son existence. Lorsqu'il est jeune, ses écailles sont marron et certaines, blanches, se regroupent pour former des taches blanches, les ocelles. Les écailles marron autour de ces ocelles blanches tendent à être plus foncées. Puis, progressivement, alors que le reptile devient adulte, les écailles marron et blanches deviennent vertes, et celles autour des ocelles deviennent noires. Mais le motif continue d’évoluer tout au long de la vie du reptile. Certaines écailles vertes deviennent noires et inversement, au point que le dessin juvénile disparaît au profit d’un motif labyrinthique noir et vert. Ce comportement écaille par écaille ne s’accorde pas avec les équations de réaction-diffusion de Turing. En effet, ces dernières décrivent un comportement continu de cellule à cellule, alors que la peau du lézard a un comportement discret, où l’unité est l’écaille. Michel Milinkovitch et son équipe ont proposé qu’un tel comportement peut être décrit par un « automate cellulaire », un modèle mathématique développé par von Neumann à partir des années 1940.

Un automate cellulaire est formé de « cellules » dans une grille qui peuvent prendre différents états au cours du temps. L’état d’une cellule à la génération suivante est déterminé par son état actuel et par celui de ses voisines. Un des automates cellulaires les plus connus est le « jeu de la vie » du mathématicien John Conway, popularisé par Martin Gardner dans le magazine Scientific American dans les années 1970. Une cellule peut être soit « vivante », soit « morte ». Si une cellule est vivante et qu’elle est entourée de deux ou trois cellules vivantes, elle reste vivante à la génération suivante ; si elle est morte et entourée de trois cellules vivantes, elle renaît au tour suivant. Toutes les autres cellules meurent (d'isolement ou de surpopulation) ou restent mortes. Malgré ces règles très simples, des phénomènes complexes émergent de ce modèle : des oscillations, des structures stables qui se déplacent, des fluctuations chaotiques, etc. Michel Milinkovitch et ses collègues ont suggéré que la dynamique du motif du lézard ocellé suit aussi ce principe, même si, dans ce cas, les cellules de la grille (les écailles) sont hexagonales, et la couleur remplace les états mort ou vivant.

Les chercheurs ont donc observé trois lézards pendant trois à quatre ans en scannant régulièrement leur corps en trois dimensions pour déterminer l’évolution d’environ 5 000 de leurs écailles. Ils ont remarqué que le motif finit par se stabiliser lorsque les écailles vertes sont entourées de quatre écailles noires et deux écailles vertes, tandis que les écailles noires sont entourées de trois vertes et trois noires. La dynamique des changements de couleur leur a permis d’identifier les règles de l’automate cellulaire qui reproduisent ces motifs. Ils ont alors simulé informatiquement ce comportement et obtenu un résultat indifférenciable de ce qu’on observe sur les lézards.

Cependant, à l’échelle microscopique, c’est bien au niveau des cellules pigmentaires de la peau que se jouent les interactions. Comment expliquer qu’une dynamique sous-jacente décrite par les équations continues de Turing donne un comportement mésoscopique discret, écaille par écaille, décrit par les automates cellulaires de von Neumann ? Michel Milinkovitch et ses collègues ont compris que l’épaisseur de la peau sous les écaille joue un rôle important. En effet, la peau est épaisse sous l’écaille, mais très mince à la frontière entre deux écailles, si bien que les interactions entre les cellules sont fortement réduites sur les bords des écailles. Les chercheurs ont introduit cet effet dans les équations de Turing, en réduisant les coefficients de diffusion sur les bords des écailles. Les simulations fondées sur ces nouvelles équations reproduisent un comportement discret avec un changement de couleur à l’échelle de l’écaille.

Un comportement d’automate cellulaire peut donc émerger de la combinaison de la géométrie des écailles (la variation de l’épaisseur de la peau) et du mécanisme de réaction-diffusion de Turing à l’échelle microscopique. Cela suggérait l’existence d’un lien mathématique formel entre les motifs de Turing et ceux des automates cellulaires, des domaines a priori complètement différents. Stanislav Smirnov, Médaille Fields 2010 (l’équivalent du Prix Nobel en mathématiques), s’est alors joint à l’équipe de Michel Milinkovitch. Ils ont démontré l’existence de ce lien formel : une réduction de la diffusion à la bordure des écailles permet de construire un modèle mathématique de Turing modifié où les écailles se comportent comme les éléments d’un automate cellulaire.

Grâce aux résultats de cette étude pluridisciplinaire associant biologie, mathématiques et physique, les chercheurs ont compris l’aspect étonnant du lézard ocellé. Ce résultat s’applique d’ailleurs à de nombreuses autres espèces de lézards et de serpents, mais pas à toutes. Il reste donc à comprendre comment les paramètres varient d’une espèce à une autre pour faire, ou non, émerger un comportement d’automate cellulaire.


Source : Pour la science
Crédit : Shutterstock.com/Omar Alonso Bautista

Comment les mathématiques décrivent les motifs du lézard ocellé Actualités

Comment les mathématiques décrivent les motifs du lézard ocellé

La robe des léopards, des zèbres et autres poissons clown arbore des motifs complexes. Comment les cellules pigmentaires microscopiques de leur peau (ou chromatophores) s'organisent-elles pour former ces spectaculaires dessins macroscopiques ? En 1952, le mathématicien anglais Alan Turing – le « père » de l'informatique – a donné une explication générale à ce phénomène en proposant un modèle qui décrit comment des réactions entre des molécules qui se diffusent dans un milieu conduisent à la formation de structures comme des zébrures, des taches, etc. Cependant, les motifs « labyrinthiques » visibles sur le dos du lézard ocellé (Timon lepidus), composés d’écailles vertes et noires, ne semblent pas obéir à ces équations. Michel Milinkovitch, biophysicien à l’université de Genève, et son équipe ont montré que le concept d'automate cellulaire, développé par autre mathématicien de génie, John von Neumann, permet de décrire la parure du reptile.

Chez le lézard ocellé, le « pixel » est l’écaille : chacune présente une couleur uniforme. Une particularité du lézard ocellé est que son aspect change au cours de son existence. Lorsqu'il est jeune, ses écailles sont marron et certaines, blanches, se regroupent pour former des taches blanches, les ocelles. Les écailles marron autour de ces ocelles blanches tendent à être plus foncées. Puis, progressivement, alors que le reptile devient adulte, les écailles marron et blanches deviennent vertes, et celles autour des ocelles deviennent noires. Mais le motif continue d’évoluer tout au long de la vie du reptile. Certaines écailles vertes deviennent noires et inversement, au point que le dessin juvénile disparaît au profit d’un motif labyrinthique noir et vert. Ce comportement écaille par écaille ne s’accorde pas avec les équations de réaction-diffusion de Turing. En effet, ces dernières décrivent un comportement continu de cellule à cellule, alors que la peau du lézard a un comportement discret, où l’unité est l’écaille. Michel Milinkovitch et son équipe ont proposé qu’un tel comportement peut être décrit par un « automate cellulaire », un modèle mathématique développé par von Neumann à partir des années 1940.

Un automate cellulaire est formé de « cellules » dans une grille qui peuvent prendre différents états au cours du temps. L’état d’une cellule à la génération suivante est déterminé par son état actuel et par celui de ses voisines. Un des automates cellulaires les plus connus est le « jeu de la vie » du mathématicien John Conway, popularisé par Martin Gardner dans le magazine Scientific American dans les années 1970. Une cellule peut être soit « vivante », soit « morte ». Si une cellule est vivante et qu’elle est entourée de deux ou trois cellules vivantes, elle reste vivante à la génération suivante ; si elle est morte et entourée de trois cellules vivantes, elle renaît au tour suivant. Toutes les autres cellules meurent (d'isolement ou de surpopulation) ou restent mortes. Malgré ces règles très simples, des phénomènes complexes émergent de ce modèle : des oscillations, des structures stables qui se déplacent, des fluctuations chaotiques, etc. Michel Milinkovitch et ses collègues ont suggéré que la dynamique du motif du lézard ocellé suit aussi ce principe, même si, dans ce cas, les cellules de la grille (les écailles) sont hexagonales, et la couleur remplace les états mort ou vivant.

Les chercheurs ont donc observé trois lézards pendant trois à quatre ans en scannant régulièrement leur corps en trois dimensions pour déterminer l’évolution d’environ 5 000 de leurs écailles. Ils ont remarqué que le motif finit par se stabiliser lorsque les écailles vertes sont entourées de quatre écailles noires et deux écailles vertes, tandis que les écailles noires sont entourées de trois vertes et trois noires. La dynamique des changements de couleur leur a permis d’identifier les règles de l’automate cellulaire qui reproduisent ces motifs. Ils ont alors simulé informatiquement ce comportement et obtenu un résultat indifférenciable de ce qu’on observe sur les lézards.

Cependant, à l’échelle microscopique, c’est bien au niveau des cellules pigmentaires de la peau que se jouent les interactions. Comment expliquer qu’une dynamique sous-jacente décrite par les équations continues de Turing donne un comportement mésoscopique discret, écaille par écaille, décrit par les automates cellulaires de von Neumann ? Michel Milinkovitch et ses collègues ont compris que l’épaisseur de la peau sous les écaille joue un rôle important. En effet, la peau est épaisse sous l’écaille, mais très mince à la frontière entre deux écailles, si bien que les interactions entre les cellules sont fortement réduites sur les bords des écailles. Les chercheurs ont introduit cet effet dans les équations de Turing, en réduisant les coefficients de diffusion sur les bords des écailles. Les simulations fondées sur ces nouvelles équations reproduisent un comportement discret avec un changement de couleur à l’échelle de l’écaille.

Un comportement d’automate cellulaire peut donc émerger de la combinaison de la géométrie des écailles (la variation de l’épaisseur de la peau) et du mécanisme de réaction-diffusion de Turing à l’échelle microscopique. Cela suggérait l’existence d’un lien mathématique formel entre les motifs de Turing et ceux des automates cellulaires, des domaines a priori complètement différents. Stanislav Smirnov, Médaille Fields 2010 (l’équivalent du Prix Nobel en mathématiques), s’est alors joint à l’équipe de Michel Milinkovitch. Ils ont démontré l’existence de ce lien formel : une réduction de la diffusion à la bordure des écailles permet de construire un modèle mathématique de Turing modifié où les écailles se comportent comme les éléments d’un automate cellulaire.

Grâce aux résultats de cette étude pluridisciplinaire associant biologie, mathématiques et physique, les chercheurs ont compris l’aspect étonnant du lézard ocellé. Ce résultat s’applique d’ailleurs à de nombreuses autres espèces de lézards et de serpents, mais pas à toutes. Il reste donc à comprendre comment les paramètres varient d’une espèce à une autre pour faire, ou non, émerger un comportement d’automate cellulaire.


Source : Pour la science
Crédit : Shutterstock.com/Omar Alonso Bautista

LE GUIDE Naturellement

Agenda . . .

22 - Côtes d'Armor

Le 22 décembre

SEANCES AU PLANETARIUM DE BRETAGNE

A l'occasion du solstice, le Planétarium de Bretagne vous invite pour deux séances au tarif spécial de 4 €.  A 15h00 : "Les astres et les Marées". A 16h00 : "Le phénomène des saisons".

Planétarium de Bretagne
Parc du Radôme
22560 Pleumeur-Bodou
02 96 15 80 30
www.planetarium-bretagne.fr


25 - Doubs

Jusqu'au 5 janvier 2020

EXPOSITION
« LE MONDE DE JULES VERNE »

L’exposition présente le créateur et poète, évoque ses voyages extraordinaires d’un nouveau genre littéraire puis explore sa quête de l’ailleurs.
Gravures, affiches de cinéma, maquettes, dessins de reconstitutions des machines de Jules Verne, carte géante représentant les itinéraires des personnages…rythment le parcours de l’exposition.

Saline royale
Grande Rue
25610 Arc et Senans
www.salineroyale.com


Du 15 février au 3 mai 2020

EXPOSITION
« GEORGES FESSY ET LA PHOTOGRAPHIE »

Exposition en coproduction avec le Familistère de Guise. Georges Fessy et la photographie est une rétrospective présentée à travers plus d’une centaine de photographies qui traduit la diversité d’une vie de photographe : paysages, portraits, natures mortes, objets d’art, vues d’architectures.

Saline royale
Grande Rue
25610 Arc et Senans
www.salineroyale.com


30 - Gard

Jusqu'au 8 mars 2020

EXPOSITION
« FEU », l’expo brûlante de la rentrée au Pont du Gard

FEU conçue par Universcience qui propose d’explorer la thématique de la maîtrise du feu par l’humain. Accessible dès 9 ans, cette exposition rassemble des installations audiovisuelles, des dispositifs multimédia et des expériences interactives ainsi que de nombreux objets visant à enrichir la connaissance des visiteurs et à déconstruire les idées reçues.

Site du Pont du Gard
La Bégude
400 route du Pont du Gard
30210 Vers-Pont-du-Gard
04 66 37 50 99
www.pontdugard.fr


34 - Hérault

Jusqu'au 23 février 2020

EXPOSITION
Ensor, Magritte, Alechinsky...

L'exposition invite à un cheminement sensible sur les sentiers de l'art Belge à travers une sélection de chefsd’oeuvre des collections du Musée d'Ixelles (Bruxelles).

Musée de Lodève
square George Auric
34700 Lodève
04 67 88 86 10
www.museedelodeve.fr


50 - Manche

Jusqu'au 5 janvier 2020

EXPOSITION
"DÉTOURS EN COTENTIN"

Il y a sept ans, la famille du photographe Gustave Bazire (1893-1941) découvre 1 400 plaques de verre. Aujourd'hui, le Cotentin expose les vues de l'artiste.

Manoir du Tourp
Omonville-la-Rogue
50440 La Hague  
02 33 01 85 89
www.letourp.com


63 - Puy-de-Dôme

Janvier et février

"CLASSE NEIGE A PETITS PRIX"

Au Centre des Volcans propose un passeport Évasion Glacée à petits prix pour les derniers créneaux disponibles en janvier et février 2020.Venez découvrir les volcans sous la neige...

Au Centre des Volcans
Rue du Frère Genestier
63230 Pontgibaud
04 73 68 18 18 / 06 21 30 79 36
www.au-centre-des-volcans.fr


88 - Vosges

Du 22 au 24 novembre

SALON DE LA CREATION TEXTILE ET MODE
"COUSU DE FIL ROUGE"

Le Salon « Cousu de fil rouge » invite les amoureux des belles choses, à la Rotonde de Thaon-les-Vosges, dans une ambiance Art-Déco aux allures de grands magasins parisiens.
Plus de 50 artisans d’art du Grand Est viennent présenter leurs trésors sur un salon rythmé par les animations spectaculaires, où la beauté rivalise avec l’ingéniosité.

Office de Tourisme d'Epinal
6 place Saint-Goëry
88000 Epinal
Tél. 03 29 82 53 32
www.tourisme-epinal.com


Du 30 novembre au 1er décembre

SALON MINÉRAUX, FOSSILES, BIJOUX, LITHOTHÉRAPIE

Pour cette 2ème édition, à Epinal, une trentaine d'exposants professionnels viennent de la France entière pour exposer et vendre des minéraux et fossiles du monde entier.
Des créateurs de bijoux en pierres naturelles seront présents et vous pourrez également trouver des pierres de santé pour la lithothérapie.

Office de Tourisme d'Epinal
6 place Saint-Goëry
88000 Epinal
Tél. 03 29 82 53 32
www.tourisme-epinal.com

Lieux:

Découvrir toutes les activités